9007116752

c3creativedomain@gmail.com

Course : Data Science & Machine Learning

Data Science with Python
Full Course for Beginners

  • Python Introduction
  • Types
  • Expressions and Variables
  • String Operations
  • Lists and Tuples
  • Sets
  • Dictionaries
  • Conditions and Branching
  • Loops
  • Functions
  • Objects and Classes
  • Array shapes and axes
  • Arithmetic Operations
  • Conditional Logic
  • Common Mathematical & Statistical Functions
  • Indexing & Slicing
  • Scalars & Vectors
  • Dot Product of Two Vectors
  • Matrix
  • Matrix Operations
  • Transpose of Matrix
  • Importance of Statistics with Respect to Data Science
  • Levels of Measurement
  • Measures of Central Tendency
  • Measure of Dispersion
  • Measures of Shape
  • Covriance & Correlation
  • Introduction to Pandas
  • Pandas Series
  • Pandas Dataframes
  • Common Functions in Pandas
  • Pandas Functions of Data Statistical Function, Window Function
  • Categorical Data
  • Working with Text Data
  • Iteration
  • Sorting
  • Plotting with Pandas
  • Data Importing and Exporting
  • Data Cleaning and Preprocessing
  • Data Manipulation
  • Exploratory Data Analysis (EDA)
  • Handling Time Series Data
  • Data Export
  • Handling Missing Data
  • Removing Duplicates
  • Data Type Conversion
  • Renaming Columns
  • Filtering and Subsetting Data
  • String Manipulation
  • Handling Outliers
  • Merging and Joining DataFrames
  • Pivoting and Reshaping Data
  • Grouping and Aggregation
  • Matplotlib Python Intro
  • MatplotlibPyplot
  • Matplotlib Plotting
  • Matplotlib Markers
  • Matplotlib Line
  • Matplotlib Labels
  • Matplotlib Grid
  • Matplotlib Subplots
  • Matplotlib Scatter
  • Matplotlib Bars
  • Matplotlib Histograms
  • Matplotlib Pie Charts
  • Dynamic Visualizations, Scipy

Quick Contact Form


    Machine Learning with Python
    Full Course for Beginners & Advance Level

    • Machine Learning Introduction.
    • Types of Machine Learning.
    • Introduction of Packages used in Machine Learning.
    • Machine Learning vs Statistical Modelling
    • Supervised vs Unsupervised Learning 
    • Supervised Learning Classification 
    • Unsupervised Learning 
    • K-Nearest Neighbors 
    • Decision Trees 
    • Random Forests
    • Reliability of Random Forests 
    • Advantages & Disadvantages of Decision Trees 
    • Regression Algorithms 
    • Model Evaluation 
    • Model Evaluation: Overfitting & Underfitting
    • Understanding Different Evaluation Models 
    • K-Means Clustering plus Advantages & Disadvantages 
    • Hierarchical Clustering plus Advantages & Disadvantages 
    • Measuring the Distances Between Clusters – Single Linkage Clustering 
    • Measuring the Distances Between Clusters – Algorithms for Hierarchy Clustering
    • Density-Based Clustering 
    • Dimensionality Reduction: Feature Extraction & Selection 
    • Collaborative Filtering & Its Challenges 
    Open chat
    1
    Hello , How can I help you ?